
A Flexible Virtual Development
Environment for Embedded Systems

2007. 6. 21.

Sang-Young Cho, Yoojin Chung, and Jung-Bae Lee*

CSE, Hankuk University of Foreign Studies
*CI, Sunmoon University

1

Contents
Introduction

Why and What is Virtual Development Environment
Examples and Our Approach

Related Research
ARMulator and SystemC Environment

Design and Implementation
Extension of ARMulator Environment
Extension with SystemC Models
Implemented VDE and uC/OS-II Porting
Verifying VDE

Conclusions

2

Introduction
Why Virtual Development Environment ?

Time-to-market is very crucial for embedded systems
Most embedded systems contains hardware IPs and software IPs
Traditional development flow

Application software design is not started until the IPs are integrated
Development cycle is too long

Virtual prototype approach
Virtually built inside a computer, and simulates real hardware
Software development can be performed without tangible hardware
Shorten the development time

Initial verification of SW/HW
Predicts performance values and guides a final design

Virtual hardware model & Simulation engine
Software development tools & Software models

Virtual Development Environment (VDE)

3

Introduction
Virtual Development Environment Examples

Virtual Platform
Commercial Configurable VDE of Virtio
Various cores of ARM, X-Scale, MIPS
Software design, development, and verification

MaxSim
Commercial VDE of ARM for SoC development
Support SystemC
ESL (Electronic System Level) Tool (SW+HW development)

Visual ESC
Commercial VDE of Summit
Processor models for ARM, MIPS
ESL tool

Expensive
Tightly integrating hardware simulation & software development tools
Limited flexibility of using hardware model and software tools

4

Introduction
Our Approach for Virtual Development Environment

Useful and Cheap Solution
For ARM processor cores over 70% market-share
ARMulator based VDE ADS 1.2

Support upto ARM10 and Xscale
Hardware IPs for PDA
uCOS-II based programming

Flexible Environment
SystemC Engine is attached to ASB bus

SystemC HW IP models
SystemC Engine is attached to AxD with RDI 1.5.1

Only SystemC models
User Interface for LCD panel,UART, LED display

Describe a VDE implementation for SW development based on
ARMulator and SystemC

5

Related Studies: ARMulator Environment

debugger

Peripherals

OS model
(semi-hosting)

Debugging &
Benchmarking &

Utility model

ARMulator

RDI protocol

Coprocessor

Configuration file
(*.ami, *.dsc)

Read
Memory
System

Extension interface

Core

ConfigRDI info
Handler

Module
agent

Host
interface

Simulation
Kernel

ARM’s virtual software development environment
Cycle-based instruction set simulator
Basic memory model
Can be extended

6

Related Studies: ARMulator Environment

ARMulator
Processor Model
(ARM7,9,10,11 + Cache)

Configurable Memory Model
Decoder

Timer Interrupt
Controller

Tracer
Profiler
MMU
Semihost

Time tick Watchdog
Timer

Debugger

In usual ARMulator environment
AxD of ADS1.2 or RealView Debugger of RVDS 3.0
Processor cores + Basic hardware IP’s
Profiler, MMU, Semihosting

7

Related Studies: SystemC
SystemC ?

C++ class library to support system level design
SystemC ver. 2.x : register transfer, algorithm/function level
Coming version : will support real-time OS and analog circuit

SystemC Design Methodoly
c ,c++

System level design
Verilog/VHDL

Simulation

Manual translation

Synthesis

AnalysisImprovement

Results

Remained works

SoC development without SystemC

Simulation Synthesis Remained worksSystemC Model Improvement

SoC development with SystemC

8

SystemC Structure
System Modeling with SystemC

Consists of modules and processes with hierarchical structure
Module includes other modules or processes (Container class)
Processes model functionalities and defined within a module
Port: Module has ports and modules are connected via ports
Signals connect modules through ports
Clock: SystemC’s special signal for a system clock
Cycle-based simulation: untimed model with clock cycle accuracy

Module

System(Module)

Module

SystemC’s System Modeling

Process

Process Process

Process

ProcessProcess ProcessProcess

Process Module

9

Design and Implementation
Extension of ARMulator Environment

Overall Structure

ARM920T
processor

ASB Bus (Arbitor/Decoder)

LCD
CONT

Interrupt
Cont

Mem Cont
ROM/DRAM

DMA(ch1)
(S/W,UART)

APB Bus (Decoder)

UART TIMER(2) Watch Dog GPIO

LCD
DMA

Bridge

SystemC
Engine

Refer to S3C2410
for PDA

ARMulator
ARM920T

MMU, Cache
ASB, APB

SystemC
MC, DMA, UART
TIMER, WDT,
GPIO, Bridge

SystemC
LCDC, INTC

10

Design and Implementation
SystemC Extension

Processor
Core

Csimul
ClassArmul_bus

SystemC
Module

SystemC
Module

SystemC
Module

Main
Module

Flat Memory

Implemented Module using
SystemC

②SystemC
Init

③init
feedback

④init
feedback

⑤ bus
operation ⑥operation

⑦states
feedback

signals

signals

signals

⑧ states
feedback

①Initialize

Simulation engine

11

Design and Implementation
SystemC Extension

In InitializeModule() function of Armul_bus
SystemC modules are initialized by Csimul class
SystemC.lib is modified

Main() sc_main()
Clock is synchronized with ASB clock

Csimul behavior
Generates modules
Make sc_signal to control input/output wires of modules
Connect signals after a main module in SystemC is made
Create functions for read/write of connected modules
During simulation, a callback function is called by Armul_bus
Allow simulation result to be reported to Armul_bus

SystemC engine is connected to ASB bus

12

Design and Implementation
Peripheral Features of the Implemented Environment

Window Program SystemC Modules

ARMulator
UART

LCD
Controller

Processor Model
(ARM7,9,10,11 + Cache)

Configurable Memory Model
Decoder

Timer Interrupt
Controller

Tracer
Profiler
MMU

Semihost

Time tick Watchdog
Timer

Timer2

Watchdog
Timer2

DMAC2

Interrupt
Controller

GPIO Port

Bridge

Memory
Controller

Window Program

LCD
Panel

UART
Interface

LED
Display

PWM
Log

AxD

SystemC
Engine

ARMulator
Timer2
WDT2
DMAC2
UART
GPIO
MC
Bridge
SystemC

SystemC
LCDC,
NTC

Windows
LCD panel
LED display
UART interface
PWM log

13

Design and Implementation

14

Porting uC/OS-II

uC/OS-II

Processor Independent: OS_CORE.C, OS_MBOX.C, OS_MEM.C, OS_Q.C,
OS_SEM.C, OS_TASK.C, OS_TIME.C, uCOS_II.C, uCOS_II.H

Processor Dependent: OS_CPU.H, OS_CPU_A.S, OS_CPU_C.C

Application Dependent: OS_CFG.H, INCLUDE.H

uC/OS-II based Application

ARMulator
UARTProcessor Model

(ARM7,9,10,11 + Cache)
Configurable Memory Model

Decoder

Timer Interrupt
Controller

Tracer
Profiler
MMU

Semihost

Time tick Watchdog
Timer

Timer2

Watchdog
Timer2

DMAC2

GPIO Port

Bridge

Memory
Controller

Window Program

UART
Interface

LED
Display

PWM
Log

AxD

Window Program SystemC Modules
LCD

Controller
Interrupt

ControllerLCD
Panel

SystemC
Engine

Design and Implementation
Testing the implemented VDE

Testing Environment
OS : Microsoft Windows XP
Compiler : Microsoft Visual C++
Debug Controller : AXD Debugger of ARM Developer Suite v1.2
Test sample program : CodeWarrior of ARM Developer Suite v1.2

3-Task Test Program
Main() creates TASK1 TAS1 createsTASK2, TASK3
TASKs are moving side-to-side with different delay values
Each TASK draws its image to Image Buffer
Can verify scheduling with timer and interrupt controller
Can verify LCD displaying with ASB bus, LCD controller and
LCD panel

With small sample programs
Verify GPIO, DMAC, UART

15

Design and Implementation
Testing the implemented VDE

16

Conclusion
Virtual Development Environment (VDE)

Provide embedded software development environment without real
hardware Reduce embedded system development cost

We implemented a flexible VDE with ARMulator and SystemC models
Target processor core adapts ARM920T processor core widely used
in commercial
Debugger ARM’s AxD
Extension of ARMulator: TIMER, WDT, MC, DMAC, UART, GPIO,
SystemC engine
SystemC Module LCD Controller, Interrupt Controller
User Interface LCD panel, LED display, UART int., PWM logging
uC/OS-II Porting Multi-threaded application

Benefits of the implemented VDE
Multi-modeling

ARMulator model and SystemC model
Multi-threaded programming

With uC/OS-II API
Construct cost is very low

ADS 1.2 with public SystemC models

17

